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Abstract. Quark mass corrections to the τ hadronic width play a significant role only for the strange quark.
The complete determination of τ decays into strange hadronic final states performed by ALEPH allows the
extraction of the strange spectral function. New results on strange decay modes from other experiments
are also incorporated into the present analysis. Using as input moments of the spectral function the
analysis leading to the determination of ms is conducted using reasonable theoretical constraints on the
nonperturbative components. Careful attention is paid to the treatment of the perturbative expansions of
the moments which exhibit convergence problems. The result obtained, ms(M2

τ ) = (120 ± 11exp ± 8Vus ±
19th) MeV = (120+21

−26) MeV, is stable over the scale from M2
τ down to about 2 GeV2. Its evolution yields

ms(1 GeV2) = (160+28
−35) MeV and ms(4 GeV2) = (116+20

−25) MeV.

1 Introduction

The high precision data on τ decays [1,2] collected at LEP
and CESR provide a powerful tool to investigate the dy-
namics of strong interaction at low energies and to deter-
mine basic parameters of the theory. The QCD analysis
of the nonstrange inclusive τ decay width [3–8] has led to
accurate measurements [9–12] of the strong coupling con-
stant at the τ mass scale, αs(M2

τ ), which complements
and competes in accuracy with the high precision deter-
mination of αs(M2

Z) from measurements of the Z width at
LEP.

More recently, experimental studies of the Cabibbo-
suppressed width of the τ became available [13,14], allow-
ing to initiate a systematic study of the corrections in-
duced by the strange quark mass in the τ decay width [3,
15–22]. From the separate measurement of the strangeness
S = 0 and S = −1 τ decay widths1 it is possible to pin
down the SU(3) breaking effects and to perform a reliable
determination of the strange quark mass.

The ALEPH data [13] have been used in previous anal-
yses to extract the value of ms(M2

τ ), leading in some cases
to different, albeit not inconsistent results [13,19,20,22].
In this paper we present an updated common analysis [23],
taking into account recent experimental information [24–
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1 Throughout this paper, charge conjugate states are im-
plied.

26] in addition to the ALEPH data. Particular attention
is given to the analysis of theoretical uncertainties and to
the stability of the results.

Even within the relatively large statistical errors of the
present data, the strange quark mass determination from
τ decays has already achieved an accuracy good enough
to substantially reduce the range quoted by the Particle
Data Group [24].

2 Theoretical framework

The theoretical analysis of the hadronic τ decay width
involves the two-point correlation functions

Πµν
ij,V (q) ≡ i

∫
d4x eiqx 〈0|T {

V µ
ij (x)V

ν
ij(0)

†} |0〉 , (1)

Πµν
ij,A(q) ≡ i

∫
d4x eiqx 〈0|T {

Aµ
ij(x)A

ν
ij(0)

†} |0〉 , (2)

associated with the time-ordered vector, V µ
ij (x) ≡ qjγ

µqi,
and axial-vector, Aµ

ij(x) ≡ qjγ
µγ5qi, colour-singlet quark

currents. The subscripts i, j denote the corresponding light
quark flavours (up, down, and strange). The correlators
admit the Lorentz decompositions

Πµν
ij,V/A(q) =

(−gµν q2 + qµqν
)
ΠT

ij,V/A(q2)

+ qµqν ΠL
ij,V/A(q2) , (3)
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where the superscript in the transverse and longitudinal
components denotes the corresponding spin, J = 1 (T)
and J = 0 (L), in the hadronic rest frame.

The hadronic decay rate of the τ lepton,

Rτ ≡ Γ
(
τ− → hadrons ντ (γ)

)
Γ

(
τ− → e− νe ντ (γ)

)
= Rτ,V +Rτ,A +Rτ,S , (4)

can be expressed as an integral of the spectral functions
ImΠT (s) and ImΠL(s) over the invariant mass s of the
final-state hadrons, where

ΠJ(s) ≡ |Vud|2
[
ΠJ

ud,V (s) +ΠJ
ud,A(s)

]
+ |Vus|2

[
ΠJ

us,V (s) +ΠJ
us,A(s)

]
, (5)

with |Vij | the corresponding Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing factors. In (4), Rτ,V and Rτ,A corre-
spond to the two terms proportional to |Vud|2 in (5) and
Rτ,S contains the remaining Cabibbo-suppressed contri-
butions.

Using the analytic properties ofΠJ(s), one can express
Rτ as a contour integral in the complex s-plane running
counter-clockwise around the circle |s| =M2

τ ,

Rτ = −πi
∮

|s|=M2
τ

ds
s

(
1 − s

M2
τ

)3

×
{
3

(
1 +

s

M2
τ

)
DL+T (s) + 4DL(s)

}
. (6)

We have used integration by parts to rewrite Rτ in terms
of the logarithmic derivatives of the relevant correlators,

DL+T (s) ≡ −s d
ds

[
ΠL+T (s)

]
, (7)

DL(s) ≡ s

M2
τ

d
ds

[
sΠL(s)

]
, (8)

which satisfy homogeneous renormalization group equa-
tions (RGE). This eliminates unwanted renormalization-
scheme dependent subtraction constants which do not con-
tribute to any physical observable.

For large enough −s, the contributions toDJ(s) can be
organized using the Operator Product Expansion (OPE)
in a series of local gauge-invariant scalar operators of in-
creasing dimension D = 2n, times the appropriate inverse
powers of −s. This expansion is expected to be well be-
haved along the complex contour |s| =M2

τ , except for the
crossing point with the positive real axis [27]. As shown
in (6), the region near the physical cut is strongly sup-
pressed by a zero of order three at s = M2

τ . Therefore,
the uncertainties associated with the use of the OPE near
the time-like axis are expected to be small. Inserting the
OPE in (6) and evaluating the contour integral, one can
rewrite Rτ as an expansion in inverse powers of M2

τ [3].
This leads to a rigorous prediction for Rτ and its different
flavour components, which, in particular, allows αs(M2

τ )
to be accurately determined [9–12].

The measurement of the invariant mass distribution of
the final state hadrons provides additional information on
the QCD dynamics. The moments [7]

Rkl
τ ≡

∫ M2
τ

0
ds

(
1 − s

M2
τ

)k (
s

M2
τ

)l
dRτ

ds
, (9)

can be calculated theoretically in the same way as Rτ ≡
R00

τ . The corresponding contour integrals take the form

Rkl
τ = −πi

∮
|x|=1

dx
x

{
3Fkl

L+T (x)DL+T (M2
τ x)

+ 4Fkl
L (x)DL(M2

τ x)
}
, (10)

where all kinematical factors have been absorbed into the
kernels Fkl

L+T (x) and Fkl
L (x). Their explicit expressions

were given in [19]. Performing the contour integration, the
result can be written as

Rkl
τ ≡ 3

[|Vud|2 + |Vus|2
]
SEW

{
1 + δ′

EW + δ(0) (11)

+
∑

D=2,4,···

(
cos2θC δ

kl(D)
ud + sin2θC δ

kl(D)
us

) }
,

where sin2θC ≡ |Vus|2/[|Vud|2 + |Vus|2] and where we have
pulled out the electroweak radiative corrections SEW =
1.0194 ± 0.0040 [28] and δ′

EW 
 0.0010 [29].
The dimension-zero contribution δ(0) is the purely per-

turbative correction neglecting quark masses, which, ow-
ing to chiral symmetry, is identical for the vector and
axial-vector parts. The symbols δkl(D)

ij ≡ [δkl(D)
ij,V +δkl(D)

ij,A ]/2
stand for the average of the vector and axial-vector con-
tributions from dimension D ≥ 2 operators; they contain
an implicit suppression factor 1/MD

τ .
A general analysis of the relevant δ00(D)

ij,V/A contributions
was presented in [3]. A detailed study of the perturbative
piece δ(0) was later performed in [6], where a resumma-
tion of higher-order corrections induced by running ef-
fects along the integration contour —denoted Contour-
Improved Fixed-Order Perturbation Theory (FOPTCI)—
was achieved with renormalization-group techniques.

The leading quark-mass corrections of dimension two
have been studied in [3,15–19]; these contributions are
the dominant SU(3) breaking effect, which generates the
wanted sensitivity to the strange quark mass. The sepa-
rate measurement of the Cabibbo-allowed and Cabibbo-
suppressed decay widths of the τ allows one to pin down
this SU(3) breaking effect through the differences [13]

δRkl
τ ≡ Rkl

τ,V +A

|Vud|2 − Rkl
τ,S

|Vus|2
= 3SEW

∑
D≥2

[
δ

kl (D)
ud − δkl (D)

us

]
. (12)

These observables vanish in the SU(3) limit, which helps to
reduce many theoretical uncertainties. In particular they
are free of possible (flavour-independent) instanton and/or
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Fig. 1. Integrand of (9) with (k=0, l=0) for the difference
(12) of the Cabibbo-corrected nonstrange and strange invari-
ant mass spectra. The contribution from massless perturbative
QCD (pQCD) vanishes. To guide the eye, the solid line inter-
polates between the bins of constant 0.1 GeV2 width

renormalon contributions which could mimic dimension-
two corrections. A detailed theoretical analysis of the lead-
ing D = 2 and D = 4 contributions to (12) has been given
in [19].

3 Experimental data

ALEPH has published a comprehensive study of τ decay
modes including kaons (charged, K0

S and K0
L) [13,30–32]

with up to four hadrons in the final state. Such an analysis
is necessary in order to separate S = −1 and S = 0 modes
with a KK pair.

The total branching ratio for τ decay into strange final
states is measured to be BS = (2.87± 0.12)% correspond-
ing to

Rτ,S = 0.1610 ± 0.0066 , (13)

using the combined value for the electronic branching ra-
tio, Be = (17.794 ± 0.045)%, obtained from the measure-
ments of the leptonic branching ratios and of the τ lifetime
[24], assuming lepton universality. Since the QCD expec-
tation for a massless quark is 0.1809 ± 0.0036, the result
(13) is evidence for a massive strange quark.

The strange spectral function is derived from the dis-
tribution of the invariant hadronic mass. It is dominated
at low mass by the K pole and the K∗(892) resonance and
at larger masses by the axial-vector resonances K1(1270)
and K1(1400), decaying into Kππ final states.

Figure 1 shows the weighted integrand of the lowest
moment δR00

τ from the ALEPH data, as a function of
the invariant mass-squared, and for which the expectation
from perturbative QCD (pQCD) vanishes in the case of
massless quarks.

The present analysis takes into account recent branch-
ing ratio results obtained by CLEO [25] and OPAL [26],

Table 1. Measured branching ratios (10−3) for τ decays into
strange final states +ντ . The ALEPH values are from [13]
and the world averages (including ALEPH) from [24–26]. The
branching ratios for the (K4π)− and (K5π)− modes are esti-
mated from the measured branching ratios for the 5π and 6π
modes introducing Cabibbo and phase space suppression.

Mode ALEPH World Average

K− 6.96 ± 0.29 6.81 ± 0.23
K−π0 4.44 ± 0.35 4.49 ± 0.34
K

0
π− 9.17 ± 0.52 8.78 ± 0.38

K−π0π0 0.56 ± 0.25 0.58 ± 0.24
K

0
π−π0 3.27 ± 0.51 3.62 ± 0.40

K−π+π− 2.14 ± 0.47 2.76 ± 0.48
K−η 0.29 ± 0.14 0.27 ± 0.06
(K3π)− 0.76 ± 0.44 0.62 ± 0.34
K1(1270)− → K−ω 0.67 ± 0.21 0.67 ± 0.21
(K4π)− (estim.) 0.34 ± 0.34 0.34 ± 0.34
(K5π)− (estim.) 0.06 ± 0.06 0.06 ± 0.06

Sum 28.65 ± 1.18 29.00 ± 1.02

Table 2. Measured spectral moments δRkl
τ (top table: first er-

ror is experimental, second from |Vus|) and their experimental
correlations (bottom table).

(k, l) δRkl
τ

(0,0) 0.374 ± 0.118 ± 0.062
(1,0) 0.398 ± 0.065 ± 0.042
(2,0) 0.399 ± 0.044 ± 0.031
(3,0) 0.396 ± 0.034 ± 0.024
(4,0) 0.395 ± 0.028 ± 0.020

(k, l) (0,0) (1,0) (2,0) (3,0) (4,0)

(0,0) 1 0.94 0.83 0.71 0.61
(1,0) - 1 0.97 0.90 0.82
(2,0) - - 1 0.98 0.94
(3,0) - - - 1 0.99
(4,0) - - - - 1

thus improving the normalization of the individual contri-
butions to the ALEPH strange spectral function.

The largest effect is found in the Kππ final states. In
particular, the branching ratio for the K−π+π− mode,
(2.14 ± 0.47) × 10−3 for ALEPH, becomes in the average
(2.76 ± 0.48) × 10−3, where the inflated error takes into
account the poor χ2 of the fit. Also, the branching ratio
for K

0
π−π0, (3.27 ± 0.51) × 10−3 for ALEPH, becomes

(3.62 ± 0.40) × 10−3 in the average.
The resulting world average for the total strange rate

is found to be

Rτ,S = 0.1630 ± 0.0057 , (14)
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with a 13% improvement in precision. Table 1 summarizes
the different contributions to Rτ,S . The value for |Vus| is
taken from the Particle Data Group unitarity fit of the
CKM matrix [24] yielding |Vus| = 0.2225 ± 0.0021. The
experimental results for the spectral moments δRkl

τ and
their correlations are given in Table 2. It can be observed
that the central values stay rather constant between k = 0
and k = 4, while the errors decrease. This is due to the
fact that for higher k values the spectral moments are
relying more and more on the accurately measured K and
K∗(892) channels. The contributions from K nπ, n ≥ 2
modes to the moments are negligible for k > 2. The error
from |Vus| is also reduced as Rk0

τ,S decreases with k. The
contributions from the various decay modes are visualized
in Fig. 2.

4 Phenomenological analysis

The present analysis is performed using the general OPE
framework including the light quark masses, the D =
4 quark mass corrections and D = 6 nonperturbative
contributions [3], neglecting higher dimensions. However,
these terms are numerically insignificant compared to the
present experimental uncertainty so that for all practical
purposes the strange quark mass is obtained from the re-
lation:

m2
s(M

2
τ ) 
 M2

τ

∆
(2)
kl (aτ )

[
δRkl

τ

24SEW

+ 2π2 〈δO4(M2
τ )〉

M4
τ

Qkl(aτ )
]
, (15)

where ∆(2)
kl (aτ ) and Qkl(aτ ) are the pQCD series, defined

in [19], associated with theD = 2 andD = 4 contributions
to δRkl

τ , aτ = αs(M2
τ )/π, and

〈δO4(M2
τ )〉 ≡ 〈0|ms s̄s−md d̄d|0〉(M2

τ )


 −(1.5 ± 0.4) × 10−3 GeV4 . (16)

Unfortunately, the QCD series for ∆(2)
kl turn out to

be problematic. They exhibit bad convergence originating
from the asymptotic behaviour of their longitudinal com-
ponents [17–19]. While the longitudinal part is known to
third order, the L+T series has been calculated to second
order only. We estimate the complete third order contri-
butions (dominated by the badly converging, but known
longitudinal part) by assuming a geometrical growth of the
perturbative coefficients, cL+T

3 
 cL+T
2 (cL+T

2 /cL+T
1 ) 


323, of the corresponding Adler function [19]. The value
of the strong coupling constant, αs(M2

τ ) = 0.334 ± 0.022,
is taken from the analyses [11,12] of the nonstrange V +A
moments Rkl

τ . Correlations between this value of αs(M2
τ )

and the moments δR(2)
kl are negligible since the uncertainty

on the former is dominated by theory and the latter by
the measurement of the strange component. Using these
inputs, the pQCD series ∆(2)

kl can be displayed up to third
order using FOPTCI[6], for example:
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Fig. 2. Integrand of (9) for the moments k = 0, . . . , 4 and
l = 0 of the difference (12). The widths of the interpolating
bands corresponds to one standard deviation

∆
(2)
00 (aτ ) = 0.9734 + 0.4811 + 0.3718 + 0.3371 + . . .

∆
(2)
10 (aτ ) = 1.0390 + 0.5576 + 0.4820 + 0.4771 + . . .

∆
(2)
20 (aτ ) = 1.1154 + 0.6432 + 0.6082 + 0.6470 + . . .

∆
(2)
30 (aτ ) = 1.1990 + 0.7374 + 0.7516 + 0.8507 + . . .

∆
(2)
40 (aτ ) = 1.2880 + 0.8404 + 0.9142 + 1.0928 + . . .

(17)

The exhibited behaviour is that of asymptotic series close
to their point of “minimum sensitivity” and a prescription
is needed to evaluate the expansions and to reasonably
estimate their uncertainties. Close examination of exam-
ples of mathematical asymptotic series suggests that a rea-
sonable procedure is to truncate the expansion where the
terms reach their minimum value. The precise prescription
—cutting at the minimum, or one order before, including
the full last term or only a fraction of it— is somewhat ar-
bitrary and this ambiguity must be reflected by a specific
uncertainty attached to the procedure. In this analysis we
adopt as a rule keeping all terms up to (and including) the
minimal one and assigning as a systematic uncertainty the
full value of the last term retained. It follows that the ∆(2)

k0
series are then summed up to third order for k = 0, 1, sec-
ond order for k = 2 and first order for k = 3, 4. It can
be remarked that the assigned truncation uncertainty is
numerically equivalent to quoting an uncertainty of 330
on xL+T

3 , i.e., a 200% error.
We disregard moments (k, l) with l �= 0 since they

suffer from an increased dependence on the D ≥ 6 non-
perturbative terms. In addition such moments carry little
information on ms.

The numerical values of the D = 4 perturbative series
Qkl are given in Table 3. The first errors give the estimated
theoretical uncertainties from missing higher order terms
in the (fast converging) expansion and the second errors
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Table 3. Numerical values of the relevant D = 4 perturbative
expansions for αs(M2

τ ) = 0.334 ± 0.022. The first errors give
the estimated theoretical uncertainties from missing higher or-
der terms in the (fast converging) series and the second errors
quote the changes induced by the uncertainty in the strong
coupling.

(k, l) Qkl(aτ )

(0,0) 1.07 ± 0.02 ± 0.01
(1,0) 1.50 ± 0.02 ± 0.01
(2,0) 1.92 ± 0.01 ± 0.00
(3,0) 2.33 ± 0.01 ± 0.01
(4,0) 2.72 ± 0.03 ± 0.02

Table 4. The strange quark mass at Mτ determined from
each of the δRk,l

τ experimental moments. The breakdown of
the different sources of uncertainties corresponds to: experi-
mental, |Vus|, αs(M2

τ ), quark condensates, truncation of the
perturbative series ∆

(2)
k0 (aτ ), and renormalization scale. The

last column gives the total theoretical uncertainty excluding
the contribution from |Vus|. Errors have been symmetrized for
reading convenience.

σms (MeV)
(k, l) ms (MeV)

exp. |Vus| αs 〈mss̄s〉 trunc. R-scale th.

(0,0) 132 26 13 2 4 9 9 14
(1,0) 120 13 9 3 4 10 11 16
(2,0) 117 10 7 3 6 14 14 21
(3,0) 117 9 8 2 8 19 16 27
(4,0) 103 7 5 3 9 20 19 29

quote the changes induced by the uncertainty in the strong
coupling.

5 Results and discussion

With the prescription given in the preceding section for
the perturbative expansion ∆(2)

kl (aτ ) and the data from
ALEPH, we first derive the strange quark mass from each
experimental δRk0

τ moment. The results are quoted in Ta-
ble 4. The values obtained for ms(M2

τ ) are rather stable
between k = 0 and k = 4. There is however a small de-
crease which could be of statistical nature, but could also
indicate a deterioration of the validity of the OPE, since
larger k values emphasize the low-mass contributions ren-
dering the approach less inclusive. The breakdown of the
error on ms(M2

τ ) into its contributions is given in Table 4:
whereas the experimental uncertainty dominates at small
k, the theoretical uncertainty, which receives its main con-
tribution from the truncation of the perturbative series
(17) and the renormalization scale, increases with k and
dominates for k ≥ 1. To estimate the latter uncertainty,
the renormalization scale is varied from 0.75Mτ to 2Mτ .
All the theoretical errors are added in quadrature. Since
the square of the strange quark mass is measured (c.f.,

15), the errors on ms(M2
τ ) are asymmetric. For reading

convenience, they are symmetrized throughout this paper,
except for the final result.

The fact that error contributions are given for the trun-
cation and the renormalization scale, both related to the
limited number of terms in the perturbative expansion,
can be considered to be a conservative approach. In addi-
tion, one can check the quoted systematic uncertainty by
modifying the truncation procedure: cutting off the expan-
sion one order less than the minimum term yieldsms(M2

τ )
values ranging from 143 MeV (for k = 0) to 127 MeV (for
k = 4), showing a slightly better relative stability, but de-
viating from the nominal results given in Table 4 by val-
ues consistent with the quoted truncation errors. Another
test of the handling of the perturbative series and its poor
convergence is obtained by comparing the chosen contour-
improved method (FOPTCI) to the more standard proce-
dure of fixed order expansion without partial resumma-
tion (FOPT). The latter method provides ms(M2

τ ) values
in the range 121 MeV (k = 0) to 119 MeV (k = 4), i.e.,
remarkably stable and consistent with the nominal values
within the uncertainties relevant to the treatment of the
perturbative series.

The |Vus| uncertainty is never dominant for any value
of k. Other sources of systematic effects are negligible: in
particular, the uncertainties from SEW and higher order
nonperturbative operators 〈δO6〉 (using the estimate of
[19]) lie in the range 0.3 to 0.6 MeV.

To optimize experimental and theoretical sensitivities,
a combined fit is performed using several moments. The
overall sensitivity increases up to k = 2 while no signifi-
cant improvement occurs for larger k values and the fitted
ms(M2

τ ) value remains stable. Keeping only lower k mo-
ments is also justified in view of a possible breakdown
of the OPE for higher moments and their worse pertur-
bative convergence (c.f., (17)). The constrained fit of the
k = 0, 1, 2 moments takes into account the very large cor-
relations between the experimental values and yields the
result:

ms(M2
τ ) = (120 ± 11exp ± 8Vus ± 19th) MeV

= (120+21
−26) MeV , (18)

where the theoretical error includes an additional uncer-
tainty of σOPE = 12 MeV which accounts for the stability
of the result when using different moments. For reading
convenience, the errors in the first line of (18) have been
symmetrized.

The result (18) can be evolved to different scales using
the four-loop RGE γ-function [33], yielding

ms(1 GeV2) = (160+28
−35) MeV , (19)

ms(4 GeV2) = (116+20
−25) MeV . (20)

As shown in the ALEPH analysis of the nonstrange τ
decays [11], one can test the validity of the QCD analy-
sis by simulating the physics of a hypothetical τ lepton
of lower mass,

√
s0. This is obtained by replacing M2

τ by
s0 everywhere in (6) and (9), and correcting the latter
for the modified kinematic factor. Under the assumption
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Fig. 3. The observables δRk0
τ (s0) as a function of the “τ -mass” squared s0 confronted to the QCD predictions and the derived

ms(s0) compared to the QCD RGE running. The two bands correspond to the experimental and theoretical uncertainties. By
construction, data and theory agree at s0 = M2

τ

of quark-hadron duality, the evaluation of the observables
as function of s0 constitutes a test of the OPE approach,
since the energy dependence of the theoretical predictions
is determined once the parameters of the theory are fixed.
The results of this exercise are given in Fig. 3, showing the
variation with s0 of the first four δRk0

τ moments and the
value forms(s0) derived from each moment. The bands in-
dicate the experimental and theoretical uncertainties. The
agreement between data and theory, perfect at s0 = M2

τ

by construction, remains acceptable for lower s0 values,
down to 1.6 (2.4) GeV2 for k = 0 (4). For the first three
moments used in the final determination, the running ob-
served in data follows the RGE evolution down to about
2 GeV2. It should be pointed out that the s0 dependence
of the theoretical prediction is obtained following the trun-
cation method defined in Sect. 4 and applied at s0 =M2

τ .
If the same rule had been consistently used at each s0
point a better agreement would have been found down to
much lower s0 values, at the price of introducing steps
in the prediction, corresponding to dropped terms in the
expansion (according to the prescription given in Sec. 4).
This observation provides another consistency test of the
procedure.

6 Comparison with other analyses

Several analyses of the ALEPH strange spectral function
have been performed in order to extract ms(M2

τ ). In the
ALEPH paper [13], a very conservative road was followed,
using only the L + T part since its perturbative expan-
sion converges well. A price was paid in the experimen-
tal sensitivity, yielding rather large uncertainties on the
result. Also, the experimental moments were fitted, not
only to the strange quark mass, but also to the values
of the nonperturbative operators 〈δO6,8〉. The values ob-
tained were in reasonable agreement with our assumption
in the present work, but unfortunately created an un-
lucky shift to a larger ms value. As we have discussed
here it is safe to neglect such contributions resulting in
a more constraining fit. The value found by ALEPH is
ms(M2

τ ) = (176+37exp
−48exp

+24th
−28th

± 14meth) MeV, on the high
side of the present determination for the reasons analyzed
above. The third quoted error covers uncertainties in the
fit and in the experimental separation of J = 0, 1 states
necessary to work with only the L+ T part.

The method used in [19] is rather close to the present
one, with the resultms(M2

τ ) = (119±12exp±10Vus ±18th)
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Lattice [48]

ms(1 GeV2) (MeV)

Fig. 4. The determination of ms(1 GeV2) in this work com-
pared to the results of other analyses based on the ALEPH
strange spectral function and on other approaches. Details are
given in the text (SR = sum rules)

MeV. Apart from using better experimental moments, the
improvements for the new analysis presented here deals
with a better treatment of the perturbative series for the
different moments and an optimal use of data and theory
through a constrained fit of three moments.

The analysis of [22] uses the ALEPH δR00
τ moment and

obtains ms(M2
τ ) = (130 ± 27exp ± 9th) MeV. It advocates

contour-improved resummation and employs an effective
charge as well as effective masses absorbing the higher
perturbative terms. The central value agrees with the cor-
responding result of the present analysis (given in the first
line of Table 4). The quoted theoretical uncertainty is half
as small as the one derived here, but not justified in the
paper. Apparently no uncertainty is included from |Vus|,
which should be ±13 MeV.

Finally, the last analysis [20] using the ALEPH data
makes use of weight functions multiplying the correlators
in (6). These weights are tuned to improve the conver-
gence of the perturbative series, while suppressing the
less accurate high-mass part of the strange spectral func-
tion. This latter feature is close to our use of higher mo-
ments in k. Since we have observed some deterioration
of the convergence for these moments and correspond-
ingly a systematic shift of the derived ms values, it is
not completely clear to what extent this procedure is ap-
plicable and thus how reliable the answer is. Neverthe-
less their result is in good agreement with (18), with a
smaller theoretical uncertainty, apparently not including
the effect from the arbitrary choice of the renormaliza-
tion scale. When evolved to M2

τ , the result of [20] reads
ms(M2

τ ) = (119 ± 14exp ± 12Vus
± 10th) MeV.

Other determinations of ms have been obtained by
analyses of the divergence of the vector and axial-vector
current two-point function correlators [34–44]. The phe-
nomenological information on the associated scalar and

pseudoscalar spectral functions is reconstructed from
phase-shift resonance analyses which are yet incomplete
over the considered mass range and need to be supple-
mented by other assumed ingredients, in particular the
description of the continuum.

Another approach [45] considers the difference between
isovector and hypercharge vector current correlators as re-
lated to the I = 1 and I = 0 spectral functions accessi-
ble in e+e− annihilation into hadrons at low energy. The
author obtains ms(1 GeV2) = (198 ± 29) MeV. This ap-
proach was criticized in [46], pointing out the possibility
of large isospin breaking leading to a significant devia-
tion for the extracted ms value. Afterwards, in [47], new
SU(3)-breaking sum rules much less affected by SU(2)
breaking were studied, with the result ms(1 GeV2) =
(178 ± 33) MeV.

Finally, lattice QCD calculations of ms are available
(see, e.g., [48,49] for recent reviews and references therein),
whose results are quite spread at present. The average re-
sult reads [48] ms(4 GeV2) = (110 ± 25) MeV.

The ms determinations discussed above are compared
in Fig. 4 at the scale of 1 GeV2.

The sum of the up and down quark masses has been
determined with Finite Energy Sum Rules [50] with the
result (mu +md)(1 GeV2) = (12.8 ± 2.5) MeV. Using the
ratio 2ms/(mu +md) = 24.4± 1.5, obtained within O(p4)
Chiral Perturbation Theory and the large NC limit [51],
this result is in nice agreement with the present determi-
nation (19).

7 Conclusions

We have used the strange spectral function in τ decays
measured by ALEPH to extract the strange quark mass.
The normalization has been improved by incorporating
recent branching ratio determinations from CLEO and
LEP experiments. The stability of the ms result has been
checked by using several moments of the invariant mass
distribution. The final value is obtained from a constrained
fit of 3 moments, yielding

ms(M2
τ ) = (120 ± 11exp ± 8Vus ± 19th) MeV

= (120+21
−26) MeV.

The theoretical error accounts for uncertainties, (i), in the
perturbative series used to O(α3

s) or lower, following a
prescription for truncating asymptotic series, (ii), in the
OPE approach, and (iii), from smaller sources.

At the customary scales where quark masses are quoted,
this result becomes

ms(1 GeV2) = (160+28
−35) MeV ,

ms(4 GeV2) = (116+20
−25) MeV .

The stability of the result is tested by varying the mass
of a hypothetical τ lepton using the measured spectral
function. The analysis remains reliable within the given
errors down to a mass of about 1.4 GeV. The procedure
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used for truncating the asymptotic QCD series would in
fact improve the stability down to even smaller masses,
with however less accuracy.

The uncertainty on the ms result is dominated by
theory. This does not mean that more precise data on
Cabibbo-suppressed τ decays are not necessary. In partic-
ular the quoted error on the validity of the OPE is derived
from the variation of ms extracted from moments of in-
creasing orders. It is not clear if the observed effect is
of statistical nature and would not disappear with larger
data samples. In general, more data, as expected from the
B-factories presently in operation, will allow more checks
to be performed with a possible gain in the theoretical
uncertainty [52]. Thus future measurements could permit
a more precise determination of the strange quark mass
along the lines presented here.
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